The human genome is littered with “selfish genetic elements,” which do not seem to benefit their hosts, but instead seek only to propagate themselves.
Selfish genetic elements can wreak havoc by, for instance, distorting sex ratios, impairing fertility, causing harmful mutations, and even potentially causing population extinction.
Biologists at the University of Rochester, including Amanda Larracuente, an associate professor of biology, and Daven Presgraves, a University Dean’s Professor of Biology, have for the first time used population genomics to shed light on the evolution and consequences of a selfish genetic element known as Segregation Distorter (SD).
In a paper published in the journal eLife, the researchers report that SD has caused dramatic changes in chromosome organization and genetic diversity.
A genome-sequencing first
The researchers used fruit flies as model organisms to study SD, a selfish genetic element that skews the rules of fair genetic transmission. Fruit flies share about 70 percent of the same genes that cause human diseases, and because they have such short reproductive cycles — less than two weeks — scientists are able to create generations of the flies in a relatively short amount of time.
Source: Read Full Article